Hamiltonian of a Harmonic Oscillator
The one-dimensional Hamiltonian is generally written as:\begin{equation}
\hat{H} = \frac{-\hbar^2}{2m} \frac{d^2}{{dx}^2} + V(x)
\end{equation}
or stated otherwise,\hat{H} = \frac{-\hbar^2}{2m} \frac{d^2}{{dx}^2} + V(x)
\end{equation}
\begin{equation}
\hat{H} = \frac{\hat{p}^2}{2m} + V(x)
\end{equation}
where $\hat{p}$ is the one-dimensional momentum operator. Classically, the potential energy of a harmonic oscillator is given by $\int_0^x kx_1 dx_1 = \frac{1}{2}kx^2$, where $k$ is the spring constant. Because $k=m\omega^2$, where $m$ is the mass of the oscillating body and $\omega$ is the angular frequency of the oscillation, the potential energy can also be written as $\frac{1}{2}m\omega^2x^2$. Analogously, for a quantum harmonic oscillator, $V(x)=\frac{1}{2}m\omega^2\hat{x}^2$, where $\hat{x}$ is the one-dimensional position operator.\hat{H} = \frac{\hat{p}^2}{2m} + V(x)
\end{equation}
\begin{equation}
\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2
\end{equation}
\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2
\end{equation}
Zero-Point Energy by the Heisenberg Uncertainty Relation
The Heisenberg uncertainty relation states that:\begin{equation}
\sigma_\hat{x} \sigma_{\hat{p}} \geq \frac{\hbar}{2}
\end{equation}
where $\sigma_\hat{x}$ and $\sigma_\hat{p}$ respectively are the uncertainties of the position operator, $\hat{x}$, and momentum operator, $\hat{p}$. The standard deviations $\sigma_\hat{x}$ and $\sigma_\hat{p}$ can also be written as the following:\sigma_\hat{x} \sigma_{\hat{p}} \geq \frac{\hbar}{2}
\end{equation}
\begin{align}
\sigma_\hat{x} & = \left\langle\left(\hat{x} - \left\langle\hat{x}\right\rangle\right)^2 \right\rangle^{1/2} \\
\sigma_\hat{p} & = \left\langle\left(\hat{p} - \left\langle\hat{p}\right\rangle\right)^2 \right\rangle^{1/2}
\end{align}
It can be derived therefore that:\sigma_\hat{x} & = \left\langle\left(\hat{x} - \left\langle\hat{x}\right\rangle\right)^2 \right\rangle^{1/2} \\
\sigma_\hat{p} & = \left\langle\left(\hat{p} - \left\langle\hat{p}\right\rangle\right)^2 \right\rangle^{1/2}
\end{align}
\begin{equation}
\left\langle\left(\hat{x} - \left\langle\hat{x}\right\rangle\right)^2 \right\rangle^{1/2} \left\langle\left(\hat{p} - \left\langle\hat{p}\right\rangle\right)^2 \right\rangle^{1/2} \geq \frac{\hbar}{2}
\end{equation}
For the harmonic oscillator we are modelling, the restoring force acting on the particle is proportional to the particle's position, so the energy potential of the well must then be $0$ at $x=0$. The scenario we are trying to induce involves the particle having $0$ potential energy as well as kinetic energy, thus $\langle\hat{x}\rangle=0$ and $\langle\hat{p}\rangle=0$.\left\langle\left(\hat{x} - \left\langle\hat{x}\right\rangle\right)^2 \right\rangle^{1/2} \left\langle\left(\hat{p} - \left\langle\hat{p}\right\rangle\right)^2 \right\rangle^{1/2} \geq \frac{\hbar}{2}
\end{equation}
\begin{equation}
\left\langle \hat{x}^2 \right\rangle^{1/2} \left\langle \hat{p}^2 \right\rangle^{1/2} \geq \frac{\hbar}{2}
\end{equation}
\begin{equation}
\left\langle \frac{1}{2}m\omega^2\hat{x}^2 \right\rangle \left\langle \frac{\hat{p}^2}{2m} \right\rangle \geq \left(\frac{\hbar\omega}{4} \right)^2
\end{equation}
To utilize the above inequality and apply it to equation $(3)$, consider the following. Let $a$ and $b$ be arbitrary positive numbers and $c$ be a positive constant. If $ab\geq c$, how can the sum $a+b$ be related to $c$?\left\langle \hat{x}^2 \right\rangle^{1/2} \left\langle \hat{p}^2 \right\rangle^{1/2} \geq \frac{\hbar}{2}
\end{equation}
\begin{equation}
\left\langle \frac{1}{2}m\omega^2\hat{x}^2 \right\rangle \left\langle \frac{\hat{p}^2}{2m} \right\rangle \geq \left(\frac{\hbar\omega}{4} \right)^2
\end{equation}
\begin{align*}
a+b & \geq a + \frac{c}{a} \\
a+b & \geq b + \frac{c}{b}
\end{align*}
The $a$ value that gives the least $a+c/a$ can be found by setting to $0$ the derivative of $a+c/a$ with respect to $a$. This minimum is thus found to occur for $1 - c/a^2 = 0$ when $a = \sqrt{c}$. (This is a minimum since the derivative of $a+c/a$ is negative for $0 < a < \sqrt{c}$ and positive for $a > \sqrt{c}$.) Similarly, the minimum of $b + c/b$ occurs when $b = \sqrt{c}$. Therefore, if $ab \geq c$, then the sum of the positive numbers $a$ and $b$ can be related to the positive constant $c$ by the following inequality:a+b & \geq a + \frac{c}{a} \\
a+b & \geq b + \frac{c}{b}
\end{align*}
\begin{equation*}
a+b \geq 2\sqrt{c}
\end{equation*}
Continuing the derivation of the zero-point energy, if we consider $\left\langle m\omega^2\hat{x}^2/2 \right\rangle$ as $a$, $\left\langle \hat{p}^2/(2m) \right\rangle$ as $b$, and $(\hbar\omega/4)^2$ as $c$, then this can be said: a+b \geq 2\sqrt{c}
\end{equation*}
\begin{equation}
\left\langle \frac{1}{2}m\omega^2\hat{x}^2 \right\rangle + \left\langle \frac{\hat{p}^2}{2m} \right\rangle \geq \frac{\hbar\omega}{2}
\end{equation}
By equation $(3)$, \left\langle \frac{1}{2}m\omega^2\hat{x}^2 \right\rangle + \left\langle \frac{\hat{p}^2}{2m} \right\rangle \geq \frac{\hbar\omega}{2}
\end{equation}
\begin{equation}
\left\langle \hat{H} \right\rangle = \left\langle \frac{\hat{p}^2}{2m} \right\rangle + \left\langle\frac{1}{2}m\omega^2\hat{x}^2 \right\rangle
\end{equation}
The zero-potential energy, $E_0$, according to the Heisenberg uncertainty relation, is consequently found to be non-zero.\left\langle \hat{H} \right\rangle = \left\langle \frac{\hat{p}^2}{2m} \right\rangle + \left\langle\frac{1}{2}m\omega^2\hat{x}^2 \right\rangle
\end{equation}
\begin{equation}
E_0 \geq \frac{\hbar\omega}{2}
\end{equation}
E_0 \geq \frac{\hbar\omega}{2}
\end{equation}
Zero-Point Energy by the Schrodinger Equation
To pin down the exact value of the zero-point energy, the time-independent Schrodinger equation, $E\psi=\hat{H}\psi$, can be used. The Hamiltonian, $\hat{H}$, has already been found in equation $(3)$ and the one-dimensional momentum operator, $\hat{p}$, is given by $-i\hbar\frac{d}{dx}$.\begin{equation}
E\psi(x) = -\frac{\hbar^2}{2m}\frac{d^2}{{dx}^2}\psi(x) + \frac{1}{2}m\omega^2\hat{x}^2\psi(x)
\end{equation}
\begin{equation}
0 = \frac{\hbar^2}{2m}\frac{d^2}{{dx}^2}\psi(x) + \left(E - \frac{1}{2}m\omega^2x^2\right)\psi(x)
\end{equation}
The above equation is a homogeneous second-order linear differential equation. Since the second derivative of $\psi(x)$ must return the product of $\psi(x)$ and the sum of a constant and a term of $x^2$, it can heuristically be deduced that a possible solution is:E\psi(x) = -\frac{\hbar^2}{2m}\frac{d^2}{{dx}^2}\psi(x) + \frac{1}{2}m\omega^2\hat{x}^2\psi(x)
\end{equation}
\begin{equation}
0 = \frac{\hbar^2}{2m}\frac{d^2}{{dx}^2}\psi(x) + \left(E - \frac{1}{2}m\omega^2x^2\right)\psi(x)
\end{equation}
\begin{equation}
\psi(x) = Ae^{Cx^2}
\end{equation}
where $A$ and $C$ are both constants yet to be found. To see whether or not this actually is a solution, substitute in $Ae^{Cx^2}$ for $\psi(x)$ in equation $(14)$.\psi(x) = Ae^{Cx^2}
\end{equation}
\begin{equation}
0 = \frac{\hbar^2}{2m} \left(2ACe^{Cx^2} + 4AC^2x^2e^{Cx^2} \right)+ \left(E - \frac{1}{2}m\omega^2x^2\right)Ae^{Cx^2}
\end{equation}
\begin{equation}
0 = \frac{\hbar^2}{m} \left(C + 2C^2x^2 \right)+ \left(E - \frac{1}{2}m\omega^2x^2\right)
\end{equation}
\begin{align}
0 & = \frac{\hbar^2}{m}C + E \\
0 & = \frac{2\hbar^2}{m}C^2 x^2 - \frac{1}{2}m\omega^2x^2
\end{align}
\begin{align}
C & = -\frac{mE}{\hbar^2} \\
C & = -\frac{m\omega}{2\hbar}
\end{align}
\begin{equation}
E = \frac{\hbar\omega}{2}
\end{equation}
From this, two conclusions can be made. First, $\psi(x) = Ae^{Cx^2}$ is a solution to the time-independent Schrodinger equation when $E = \hbar\omega/2$ if $C = -mE/\hbar^2 = -m\omega/(2\hbar)$. Second, by equation $(12)$, this solution must be for the ground state of the harmonic oscillator and the zero-point energy is therefore:0 = \frac{\hbar^2}{2m} \left(2ACe^{Cx^2} + 4AC^2x^2e^{Cx^2} \right)+ \left(E - \frac{1}{2}m\omega^2x^2\right)Ae^{Cx^2}
\end{equation}
\begin{equation}
0 = \frac{\hbar^2}{m} \left(C + 2C^2x^2 \right)+ \left(E - \frac{1}{2}m\omega^2x^2\right)
\end{equation}
\begin{align}
0 & = \frac{\hbar^2}{m}C + E \\
0 & = \frac{2\hbar^2}{m}C^2 x^2 - \frac{1}{2}m\omega^2x^2
\end{align}
\begin{align}
C & = -\frac{mE}{\hbar^2} \\
C & = -\frac{m\omega}{2\hbar}
\end{align}
\begin{equation}
E = \frac{\hbar\omega}{2}
\end{equation}
\begin{equation}
E_0 = \frac{\hbar\omega}{2}
\end{equation}
E_0 = \frac{\hbar\omega}{2}
\end{equation}
All mathematical symbols are not visible
ReplyDelete