Consider the Gaussian integral, $\int_{-\infty}^{\infty} e^{-x^2} dx$. Using heuristic methods, this integral is difficult if not impossible to solve. However, notice that taking the square of the integral allows us to write this equation:
\begin{equation}
\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-x^2} dx
\end{equation}
Since the integrals are definite with respect to $x$, $x$ can be replaced by any dummy variable of choice. This allows the substitution of $y$ in the place of $x$ in the second definite integral in the right side of the above equation. \left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-x^2} dx
\end{equation}
\begin{equation}
\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy
\end{equation}
\begin{equation}
\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^2 + y^2\right)} dx dy
\end{equation}
The right side of the above equation is a double integral in Cartesian coordinates and can be equivalently expressed using shell integration (a double integration in polar coordinates). Let $r\cos\theta = x$ and $r\sin\theta = y$, making $r^2 = x^2 + y^2$. Writing the double integral of equation $(3)$ using shell inegration yields:\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy
\end{equation}
\begin{equation}
\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^2 + y^2\right)} dx dy
\end{equation}
\begin{equation}
\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_0^{2\pi} \int_{0}^{\infty} e^{-r^2} r dr d\theta
\end{equation}
Let $u=r^2$.\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_0^{2\pi} \int_{0}^{\infty} e^{-r^2} r dr d\theta
\end{equation}
\begin{equation}
\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \frac{1}{2} \int_0^{2\pi} \int_{0}^{\infty} e^{-u} du d\theta
\end{equation}
\begin{equation}
\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \frac{1}{2} \int_0^{2\pi} d\theta
\end{equation}
\begin{equation}
\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \pi
\end{equation}
\begin{equation}
\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}
\end{equation}
\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \frac{1}{2} \int_0^{2\pi} \int_{0}^{\infty} e^{-u} du d\theta
\end{equation}
\begin{equation}
\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \frac{1}{2} \int_0^{2\pi} d\theta
\end{equation}
\begin{equation}
\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \pi
\end{equation}
\begin{equation}
\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}
\end{equation}
No comments:
Post a Comment