\begin{align}
H_n(x) &= (-1)^n e^{x^2} \frac{d^n}{{dx}^n} e^{-x^2} \\
H_n(x) &= e^{x^2/2} \left(x - \frac{d}{dx}\right)^n e^{-x^2/2}
\end{align}
To prove the equivalency of the above two definitions, define operators $A$ and $B$ as:H_n(x) &= (-1)^n e^{x^2} \frac{d^n}{{dx}^n} e^{-x^2} \\
H_n(x) &= e^{x^2/2} \left(x - \frac{d}{dx}\right)^n e^{-x^2/2}
\end{align}
\begin{align}
A &= - e^{x^2} \frac{d}{dx} e^{-x^2} \\
B &= e^{x^2/2} \left(x - \frac{d}{dx}\right) e^{-x^2/2}
\end{align}
In this way, we can write:A &= - e^{x^2} \frac{d}{dx} e^{-x^2} \\
B &= e^{x^2/2} \left(x - \frac{d}{dx}\right) e^{-x^2/2}
\end{align}
\begin{align}
A^n &= (-1)^n e^{x^2} \frac{d^n}{{dx}^n} e^{-x^2} \\
B^n &= e^{x^2/2} \left(x - \frac{d}{dx}\right)^n e^{-x^2/2}
\end{align}
Thus, if we prove $A=B$, then definitions $(1)$ and $(2)$ are proved to be equivalent. Let $f$ be an arbitrary function.A^n &= (-1)^n e^{x^2} \frac{d^n}{{dx}^n} e^{-x^2} \\
B^n &= e^{x^2/2} \left(x - \frac{d}{dx}\right)^n e^{-x^2/2}
\end{align}
\begin{align}
Af &= - e^{x^2} \frac{d}{dx} \left(e^{-x^2}f\right) \\
Bf &= e^{x^2/2} \left(x - \frac{d}{dx}\right) \left(e^{-x^2/2}f\right)
\end{align}
\begin{align}
Af &= 2xf - \frac{d}{dx}f \\
Bf &= xf + xf - \frac{d}{dx} f
\end{align}
\begin{equation}
A=B
\end{equation}
Therefore, the two definitions, $(1)$ and $(2)$, of Hermite polynomials are proved to be equivalent.Af &= - e^{x^2} \frac{d}{dx} \left(e^{-x^2}f\right) \\
Bf &= e^{x^2/2} \left(x - \frac{d}{dx}\right) \left(e^{-x^2/2}f\right)
\end{align}
\begin{align}
Af &= 2xf - \frac{d}{dx}f \\
Bf &= xf + xf - \frac{d}{dx} f
\end{align}
\begin{equation}
A=B
\end{equation}
No comments:
Post a Comment