Ground State Wave Function
The number operator returns the quantum number of a particle, so applying the number operator, $N$, to the wave function, $\psi_0(x)$, of a particle in the ground state should give:\begin{equation}
N\psi_0(x)=0
\end{equation}
\begin{equation}
\left(\frac{\hat{p}^2}{2m\hbar\omega} + \frac{m\omega\hat{x}^2}{2\hbar} - \frac{1}{2}\right) \psi_0(x) = 0
\end{equation}
In the above equation, $\hat{p}$ and $\hat{x}$ are the one-dimensional momentum operator and the one-dimensional position operator respectively.N\psi_0(x)=0
\end{equation}
\begin{equation}
\left(\frac{\hat{p}^2}{2m\hbar\omega} + \frac{m\omega\hat{x}^2}{2\hbar} - \frac{1}{2}\right) \psi_0(x) = 0
\end{equation}
\begin{equation}
-\frac{\hbar}{2m\omega}\frac{d^2}{{dx}^2}\psi_0(x) + \left(\frac{m\omega x^2}{2\hbar} - \frac{1}{2}\right) \psi_0(x) = 0
\end{equation}
Since the second derivative of $\psi_0(x)$ must return the product of $\psi_0(x)$ and the sum of a constant and a term of $x^2$, it can heuristically be deduced that a possible solution is:-\frac{\hbar}{2m\omega}\frac{d^2}{{dx}^2}\psi_0(x) + \left(\frac{m\omega x^2}{2\hbar} - \frac{1}{2}\right) \psi_0(x) = 0
\end{equation}
\begin{equation}
\psi_0(x) = Ae^{Cx^2}
\end{equation}
where $A$ and $C$ are constants yet to be determined. Substitute this possible solution for $\psi_0(x)$ into equation $(3)$ for verification and to solve for $C$.\psi_0(x) = Ae^{Cx^2}
\end{equation}
\begin{equation}
-\frac{\hbar}{2m\omega}\left(2ACe^{Cx^2} + 4AC^2x^2e^{Cx^2}\right) + \left(\frac{m\omega x^2}{2\hbar} - \frac{1}{2}\right) Ae^{Cx^2} = 0
\end{equation}
\begin{equation}
-\frac{\hbar C}{m\omega} - \frac{1}{2} - \frac{2\hbar C^2x^2}{m\omega} + \frac{m\omega x^2}{2\hbar}= 0
\end{equation}
\begin{align}
-\frac{\hbar C}{m\omega} - \frac{1}{2} &= 0 \\
-\frac{2\hbar C^2x^2}{m\omega} + \frac{m\omega x^2}{2\hbar} &= 0
\end{align}
\begin{equation}
C = -\frac{m\omega}{2\hbar}
\end{equation}
Therefore, the solution for the ground state wave function is verified to be:-\frac{\hbar}{2m\omega}\left(2ACe^{Cx^2} + 4AC^2x^2e^{Cx^2}\right) + \left(\frac{m\omega x^2}{2\hbar} - \frac{1}{2}\right) Ae^{Cx^2} = 0
\end{equation}
\begin{equation}
-\frac{\hbar C}{m\omega} - \frac{1}{2} - \frac{2\hbar C^2x^2}{m\omega} + \frac{m\omega x^2}{2\hbar}= 0
\end{equation}
\begin{align}
-\frac{\hbar C}{m\omega} - \frac{1}{2} &= 0 \\
-\frac{2\hbar C^2x^2}{m\omega} + \frac{m\omega x^2}{2\hbar} &= 0
\end{align}
\begin{equation}
C = -\frac{m\omega}{2\hbar}
\end{equation}
\begin{equation}
\psi_0(x) = A\exp\left(-\frac{m\omega x^2}{2\hbar}\right)
\end{equation}
To solve for the normalizing constant $A$, apply the following normalization equation:\psi_0(x) = A\exp\left(-\frac{m\omega x^2}{2\hbar}\right)
\end{equation}
\begin{equation}
\int_{-\infty}^\infty |\psi_0(x)|^2 dx = 1
\end{equation}
\begin{equation}
|A|^2 \int_{-\infty}^\infty \exp\left(-\frac{m\omega x^2}{\hbar}\right) dx = 1
\end{equation}
Let $u = \sqrt{m\omega/\hbar} x$.\int_{-\infty}^\infty |\psi_0(x)|^2 dx = 1
\end{equation}
\begin{equation}
|A|^2 \int_{-\infty}^\infty \exp\left(-\frac{m\omega x^2}{\hbar}\right) dx = 1
\end{equation}
\begin{equation}
|A|^2 \sqrt{\frac{\hbar}{m \omega}}\int_{-\infty}^\infty e^{-u^2} du = 1
\end{equation}
The definite integral in the above equation is the Gaussian integral and gives a value of $\sqrt{\pi}$.|A|^2 \sqrt{\frac{\hbar}{m \omega}}\int_{-\infty}^\infty e^{-u^2} du = 1
\end{equation}
\begin{equation}
|A|^2 \sqrt{\frac{\pi\hbar}{m \omega}} = 1
\end{equation}
\begin{equation}
A = \left(\frac{m \omega}{\pi\hbar}\right)^{1/4}
\end{equation}
Note that although $A$ can be written as being negative or even complex as long as equation $(14)$ is satisfied, normalizing constants are real and positive by convention. The ground state wave function for a harmonic oscillator is thus derived to be:|A|^2 \sqrt{\frac{\pi\hbar}{m \omega}} = 1
\end{equation}
\begin{equation}
A = \left(\frac{m \omega}{\pi\hbar}\right)^{1/4}
\end{equation}
\begin{equation}
\psi_0(x) = \left(\frac{m \omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{m\omega x^2}{2\hbar}\right)
\end{equation}
\psi_0(x) = \left(\frac{m \omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{m\omega x^2}{2\hbar}\right)
\end{equation}
General Wave Function
Applying the raising operator, $a^\dagger$, $n$ times to the ground state wave function, $\psi_0(x)$, gives:\begin{equation}
\left(a^\dagger\right)^n \psi_0(x) = \sqrt{n!} \psi_n(x)
\end{equation}
where $\psi_n(x)$ is the wave function with quantum number $n$. \left(a^\dagger\right)^n \psi_0(x) = \sqrt{n!} \psi_n(x)
\end{equation}
\begin{equation}
\psi_n(x) = \frac{1}{\sqrt{n!}} \left(a^\dagger\right)^n \psi_0(x)
\end{equation}
Substituting in the raising operator and the ground state wave function allows $\psi_n(x)$ to be written as so:\psi_n(x) = \frac{1}{\sqrt{n!}} \left(a^\dagger\right)^n \psi_0(x)
\end{equation}
\begin{equation}
\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m \omega}{\pi\hbar}\right)^{1/4} \left( \sqrt{\frac{m\omega}{\hbar}}\hat{x} - \frac{i}{\sqrt{\hbar m\omega}}\hat{p} \right)^n \exp\left(-\frac{m\omega x^2}{2\hbar}\right)
\end{equation}
\begin{equation}
\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m \omega}{\pi\hbar}\right)^{1/4} \left( \sqrt{\frac{m\omega}{\hbar}}x - \sqrt{ \frac{\hbar}{m\omega}}\frac{d}{dx} \right)^n \exp\left(-\frac{m\omega x^2}{2\hbar}\right)
\end{equation}
\begin{equation}
\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m \omega}{\pi\hbar}\right)^{1/4} \left( \sqrt{\frac{m\omega}{\hbar}}x - \frac{d}{d\left(\sqrt{m\omega/\hbar}x\right)} \right)^n \exp\left(-\frac{m\omega x^2}{2\hbar}\right)
\end{equation}
Thus, the wave function for a quantum harmonic oscillator of quantum number $n$ is derived to be:\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m \omega}{\pi\hbar}\right)^{1/4} \left( \sqrt{\frac{m\omega}{\hbar}}\hat{x} - \frac{i}{\sqrt{\hbar m\omega}}\hat{p} \right)^n \exp\left(-\frac{m\omega x^2}{2\hbar}\right)
\end{equation}
\begin{equation}
\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m \omega}{\pi\hbar}\right)^{1/4} \left( \sqrt{\frac{m\omega}{\hbar}}x - \sqrt{ \frac{\hbar}{m\omega}}\frac{d}{dx} \right)^n \exp\left(-\frac{m\omega x^2}{2\hbar}\right)
\end{equation}
\begin{equation}
\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m \omega}{\pi\hbar}\right)^{1/4} \left( \sqrt{\frac{m\omega}{\hbar}}x - \frac{d}{d\left(\sqrt{m\omega/\hbar}x\right)} \right)^n \exp\left(-\frac{m\omega x^2}{2\hbar}\right)
\end{equation}
\begin{equation}
\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m \omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{m\omega x^2}{2\hbar}\right) H_n\left( \sqrt{\frac{m\omega}{\hbar}}x \right)
\end{equation}
where $H_n\left(\sqrt{m\omega/\hbar}x\right)$ is the $n$th-degree Hermite polynomial of $\sqrt{m\omega/\hbar}x$.\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m \omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{m\omega x^2}{2\hbar}\right) H_n\left( \sqrt{\frac{m\omega}{\hbar}}x \right)
\end{equation}
No comments:
Post a Comment