\begin{equation}
\mathbf{p}= \hbar\mathbf{k}
\end{equation}
The momentum of a quantum mechanical system is actually given by the same formula, so it can be said of the momentum operator that $\hat{p}\phi \left(\mathbf{k}\right) = \hbar{\mathbf{k}} \phi\left(\mathbf{k} \right)$ if $\phi\left( \mathbf{k} \right)$ is the system's wave function in momentum space. But say we had the position space wave function, $\psi(x)$ (let's work only in the $x$ dimension for now), for which we wanted to find the momentum. To do this, we need to derive the momentum operator in position space whose $x$-component is defined as $\hat{p}_x\psi(x) = p_x\psi(x)$. Recall the Fourier transform equation for transforming from position to momentum space:\mathbf{p}= \hbar\mathbf{k}
\end{equation}
\begin{equation}
\phi(k_x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(x)e^{-ik_xx} dx
\end{equation}
We know that applying the $x$-component momentum operator to both sides will give this:\phi(k_x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(x)e^{-ik_xx} dx
\end{equation}
\begin{equation}
\hat{p}_x\phi(k_x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hbar{k_x}\psi(x) e^{-ik_xx} dx
\end{equation}
Integrating by parts,\hat{p}_x\phi(k_x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hbar{k_x}\psi(x) e^{-ik_xx} dx
\end{equation}
\begin{equation}
\hat{p}_x\phi(k_x) = \frac{1}{\sqrt{2\pi}} \left[\frac{\hbar k_x}{-ik_x} \psi(x) e^{-ik_xx}- \int \frac{\hbar k_x}{-ik_x} \frac{\partial \psi(x)}{\partial x} e^{-ik_xx} dx\right]_{x =-\infty}^{x =\infty}
\end{equation}
Because $\lim_{x \to \pm\infty} \psi(x)=0$,\hat{p}_x\phi(k_x) = \frac{1}{\sqrt{2\pi}} \left[\frac{\hbar k_x}{-ik_x} \psi(x) e^{-ik_xx}- \int \frac{\hbar k_x}{-ik_x} \frac{\partial \psi(x)}{\partial x} e^{-ik_xx} dx\right]_{x =-\infty}^{x =\infty}
\end{equation}
\begin{equation}
\hat{p}_x\phi(k_x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty \frac{\hbar}{i} \frac{\partial \psi(x)}{\partial x}e^{-ik_xx} dx
\end{equation}
Comparing this to equation $(3)$, we can complete the derivation of the $x$-component momentum operator in position space:\hat{p}_x\phi(k_x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty \frac{\hbar}{i} \frac{\partial \psi(x)}{\partial x}e^{-ik_xx} dx
\end{equation}
\begin{equation}
\hat{p}_x = -i\hbar \frac{\partial}{\partial x}
\end{equation}
(If you didn't know before, $\frac{1}{i} = \frac{i}{i^2} = -i$.) Similarly, for the $z$- and $y$-components, we can prove:\hat{p}_x = -i\hbar \frac{\partial}{\partial x}
\end{equation}
\begin{equation}
\hat{p}_y = -i\hbar \frac{\partial}{\partial y}
\end{equation}
\begin{equation}
\hat{p}_z = -i\hbar \frac{\partial}{\partial z}
\end{equation}
Furthermore, because $\hat{p} = \mathbf{x}\hat{p}_x + \mathbf{y}\hat{p}_y + \mathbf{z}\hat{p}_z$ where $\mathbf{x}$, $\mathbf{y}$, and $\mathbf{z}$ are unit vectors in the $x$, $y$, and $z$ directions respectively, we can write $\hat{p}$ in terms of the del operator, $\nabla = \mathbf{x} \frac{\partial}{\partial x} + \mathbf{y} \frac{\partial}{\partial y} + \mathbf{z} \frac{\partial}{\partial z}$:\hat{p}_y = -i\hbar \frac{\partial}{\partial y}
\end{equation}
\begin{equation}
\hat{p}_z = -i\hbar \frac{\partial}{\partial z}
\end{equation}
\begin{equation}
\hat{p} = -i\hbar\nabla
\end{equation}
\hat{p} = -i\hbar\nabla
\end{equation}
Sources? ?
ReplyDeleteI stumbled across this and thought I'd share a slightly simpler derivation:
ReplyDelete\begin{align*}
\mel{p_0}{\opX}{\psi} &= \int \braket{p_0}{x_0}\mel{x_0}{\opX}{\psi}dx_0 & \text{RI} \\
&= \frac{1}{\sqrt{2\pi\hbar}}\int x_0e^{\frac{-i}{\hbar}p_0x_0}\braket{x_0}{\psi}dx_0 & \text{given } \mel{x_0}{\opX}{\psi} \\
&= \frac{1}{\sqrt{2\pi\hbar}}\int \left(i\hbar\frac{\partial}{\partial p_0}\right)e^{\frac{-i}{\hbar}p_0x_0}\braket{x_0}{\psi}dx_0 & \text{ } \\
&= \int \left(i\hbar\frac{\partial}{\partial p_0}\right)\braket{p_0}{x_0}\braket{x_0}{\psi}dx_0 & \text{Go back now } \\
&= \left(i\hbar\frac{\partial}{\partial p_0}\right)\braket{p_0}{\psi} & \text{Integrate over } x_0 \qed\\
\end{align*}