\begin{equation}
\frac{1}{1+x^2} = \frac{1}{2} \frac{1-ix+1+ix}{1+x^2}
\end{equation}
\begin{equation}
\frac{1}{1+x^2} = \frac{1}{2} \frac{1-ix+1+ix}{(1+ix)(1-ix)}
\end{equation}
\begin{equation}
\frac{1}{1+x^2} = \frac{1}{2} \left(\frac{1}{1+ix}+\frac{1}{1-ix}\right)
\end{equation}
And now, if we integrate both sides with respect to $x$:\frac{1}{1+x^2} = \frac{1}{2} \frac{1-ix+1+ix}{1+x^2}
\end{equation}
\begin{equation}
\frac{1}{1+x^2} = \frac{1}{2} \frac{1-ix+1+ix}{(1+ix)(1-ix)}
\end{equation}
\begin{equation}
\frac{1}{1+x^2} = \frac{1}{2} \left(\frac{1}{1+ix}+\frac{1}{1-ix}\right)
\end{equation}
\begin{equation}
\int\frac{1}{1+x^2}dx = \frac{1}{2} \int\left(\frac{1}{1+ix} + \frac{1}{1-ix}\right)dx
\end{equation}
\begin{equation}
\tan^{-1}{x} = \frac{-i}{2} [\text{Log}(1+ix)-\text{Log}(1-ix)] + C
\end{equation}
In case you didn't know, $\text{Log}{z}$ is the complex logarithm of $z$, defined by $\exp{\text{Log}z}=z$ where $z$ is any complex number. (To prove that $\frac{d}{dz}\text{Log}z = z^{-1}$, simply differentiate both sides of the statement, $\exp{\text{Log}z}=z$, using the chain rule and solve for $\frac{d}{dz}\text{Log}z$.)\int\frac{1}{1+x^2}dx = \frac{1}{2} \int\left(\frac{1}{1+ix} + \frac{1}{1-ix}\right)dx
\end{equation}
\begin{equation}
\tan^{-1}{x} = \frac{-i}{2} [\text{Log}(1+ix)-\text{Log}(1-ix)] + C
\end{equation}
\begin{equation}
2i\tan^{-1}{x}-2iC = \text{Log}(1+ix) - \text{Log}(1-ix)
\end{equation}
\begin{equation}
\exp\left(2i\tan^{-1}{x} - 2iC\right) = \exp[\text{Log}(1+ix)-\text{Log}(1-ix)]
\end{equation}
\begin{equation}
\exp\left(2i\tan^{-1}{x} - 2iC\right) = \frac{1+ix}{1-ix}
\end{equation}
That is an interesting relation, but can we simplify even further? Recall that $\cos{\tan^{-1}{x}} = 1/\sqrt{1+x^2}$ and $\sin{\tan^{-1}{x}} = x/\sqrt{1+x^2}$. (These trigonometric identities can be derived by considering a right triangle with an angle of $\tan^{-1}{x}$, an opposite leg length of $x$, an adjacent leg length of $1$ and a hypotenuse length of $\sqrt{1+x^2}$.) If we manipulate equation $(8)$ a little, these trigonometric identities can come in handy. 2i\tan^{-1}{x}-2iC = \text{Log}(1+ix) - \text{Log}(1-ix)
\end{equation}
\begin{equation}
\exp\left(2i\tan^{-1}{x} - 2iC\right) = \exp[\text{Log}(1+ix)-\text{Log}(1-ix)]
\end{equation}
\begin{equation}
\exp\left(2i\tan^{-1}{x} - 2iC\right) = \frac{1+ix}{1-ix}
\end{equation}
\begin{equation}
\exp\left(2i\tan^{-1}{x} - 2iC\right) = \frac{(1+ix)^2}{1+x^2}
\end{equation}
Let $A=\pm{e^{-iC}}$.\exp\left(2i\tan^{-1}{x} - 2iC\right) = \frac{(1+ix)^2}{1+x^2}
\end{equation}
\begin{equation}
A\exp\left( i\tan^{-1}{x} \right) = \frac{1+ix}{\sqrt{1+x^2}}
\end{equation}
\begin{equation}
A\exp\left( i\tan^{-1}{x} \right) = \cos\tan^{-1}{x} + i\sin\tan^{-1}{x}
\end{equation}
\begin{equation}
Ae^{ix}=\cos{x}+i\sin{x} ,\qquad -\frac{\pi}{2} < x < \frac{\pi}{2} \end{equation}
If we substitute in $0$ for $x$, we find that $A=1$.A\exp\left( i\tan^{-1}{x} \right) = \frac{1+ix}{\sqrt{1+x^2}}
\end{equation}
\begin{equation}
A\exp\left( i\tan^{-1}{x} \right) = \cos\tan^{-1}{x} + i\sin\tan^{-1}{x}
\end{equation}
\begin{equation}
Ae^{ix}=\cos{x}+i\sin{x} ,\qquad -\frac{\pi}{2} < x < \frac{\pi}{2} \end{equation}
\begin{equation}
e^{ix}= \cos{x}+i\sin{x} ,\qquad -\frac{\pi}{2} < x < \frac{\pi}{2} \end{equation}
Now, to show that $e^{ix} = \cos{x}+i\sin{x}$ is true for all $x$, note that both $y=e^{ix}$ and $y = \cos{x}+i\sin{x}$ are solutions to the first-order differential equation $\frac{dy}{dx} = iy$ for all $x$, and both solutions share the point $(0,1)$. Therefore, the two solutions are equal for all $x$.e^{ix}= \cos{x}+i\sin{x} ,\qquad -\frac{\pi}{2} < x < \frac{\pi}{2} \end{equation}
\begin{equation}
e^{ix} = \cos{x}+i\sin{x}
\end{equation}
And that's Euler's formula. This equation is quite important when dealing with stuff like Fourier Transforms and is an active ingredient in quantum mechanical wave functions, because it allows you to write complex wave forms as exponential functions.e^{ix} = \cos{x}+i\sin{x}
\end{equation}
No comments:
Post a Comment