Saturday, August 31, 2013

Rectangular Potential Barrier

Rectangular potential barriers, also called square potential barriers, are formed by energy potentials which create wall-like barricades for particles. Essentially, a potential barrier is a potential step except the energy potential returns to zero at some finite positive $x$-position, $a$, and remains zero beyond that point. Here, we'll derive the wave function of a particle facing a rectangular potential barrier, then find the transmission and reflection coefficients of the particle upon encountering the barrier.

Schrodinger Equations

Key to solving for the wave function of a particle hitting a potential barrier is finding the Schrodinger equations which describe the system. First, define the energy potential, $V(x)$, of the system as this:
\begin{equation}
V(x) = \begin{cases} 0, & x < 0 \\ V_0, & 0 < x < a \\ 0, & x > a \end{cases}
\end{equation}
Writing the wave function of the particle as $\psi_1(x)$ for $x < 0$, $\psi_2(x)$ for $0 < x < a$, and $\psi_3(x)$ for $x > a$, the Schrodinger equations for $x < 0$, $0 < x < a$, and $x > a$ are respectively:
\begin{align}
E\psi_1(x) & = -\frac{\hbar^2}{2m} \frac{d^2}{{d x}^2} \psi_1(x) \\
E\psi_2(x) & = -\frac{\hbar^2}{2m} \frac{d^2}{{d x}^2} \psi_2(x) + V_0\psi_2(x) \\
E\psi_3(x) & = -\frac{\hbar^2}{2m} \frac{d^2}{{d x}^2} \psi_3(x)
\end{align}
This can be simplified, considering the wavenumbers, $k_1$ and $k_2$, of the wave function for inside and outside the barrier respectively. Since ${k_1}^2 = 2mE/\hbar^2$ and ${k_2}^2 = 2m( E - V_0) /\hbar^2$, this can be said of the wave function of a particle with $E \geq V_0$.
\begin{align}
0 & = \frac{d^2}{{d x}^2} \psi_1(x) + {k_1}^2 \psi_1(x) \\
0 & = \frac{d^2}{{d x}^2} \psi_2(x) + {k_2}^2 \psi_2(x) \\
0 & = \frac{d^2}{{d x}^2} \psi_3(x) + {k_1}^2 \psi_3(x)
\end{align}
Notice, however that if $E < V_0$, $k_2$ is imaginary and thus no longer an observable. By convention therefore, $\kappa$, defined by ${\kappa}^2 = 2m(V_0-E) /\hbar^2$, is used instead for $E < V_0$. The differential equations defining the wave function of a particle with insufficient energy are thus:
\begin{align}
0 & = \frac{d^2}{{d x}^2} \psi_1(x) + {k_1}^2 \psi_1(x) \\
0 & = \frac{d^2}{{d x}^2} \psi_2(x) - {\kappa}^2 \psi_2(x) \\
0 & = \frac{d^2}{{d x}^2} \psi_3(x) + {k_1}^2 \psi_3(x)
\end{align}

If There Is Sufficient Energy

For $E\geq V_0$, to find the wave function of the particle, equations $(5)$, $(6)$, and $(7)$ must be solved. These are homogeneous second-order linear differential equations and have the following general solutions:
\begin{align}
\psi_1(x) & = Ae^{r_Ax} + Be^{r_Bx} \\
\psi_2(x) & = Ce^{r_Cx} + De^{r_Dx} \\
\psi_3(x) & = Fe^{r_Fx} + Ge^{r_Gx}
\end{align}
where $A$, $B$, $C$, $D$, $F$, and $G$ are constants and $r_{A}=r_{F}$ and $r_{B}=r_{G}$ are the two solutions to the equation $r^2+{k_1}^2=0$ while $r_C$ and $r_D$ are the two solutions to the equation $r^2+{k_2}^2=0$.
\begin{align}
\psi_1(x) & = Ae^{ik_1x} + Be^{-ik_1x} \\
\psi_2(x) & = Ce^{ik_2x} + De^{-ik_2x} \\
\psi_3(x) & = Fe^{ik_1x} + Ge^{-ik_1x}
\end{align}
Notice, considering Euler's formula, that $Ae^{ik_1x}$, $Ce^{ik_2x}$, and $Fe^{ik_1x}$ represent waves travelling in the positive direction while $Be^{−ik_1x}$, $De^{−ik_2x}$, and $Ge^{-ik_1x}$ represent waves travelling in the negative direction. Since reflection by the barrier is conceivable, it is possible to have wave components travelling in the negative direction for $x < a$ , but there is no reason to have waves doing so for $x > a$. Thus, $G=0$.
\begin{align}
\psi_1(x) & = Ae^{ik_1x} + Be^{-ik_1x} \\
\psi_2(x) & = Ce^{ik_2x} + De^{-ik_2x} \\
\psi_3(x) & = Fe^{ik_1x}
\end{align}
To solve for $B$ and $F$ in relation to $A$, impose these four boundary conditions to ensure that the wave function is a smooth curve as $x\to 0$ and as $x\to a$:
\begin{align*}
\lim_{x\to0^-} \psi_1(x) &= \lim_{x\to0^+} \psi_2(x) \\
\lim_{x\to0^-} \frac{d}{d x}\psi_1(x) &= \lim_{x\to0^+} \frac{d}{d x}\psi_2(x) \\
\lim_{x\to a^-} \psi_2(x) &= \lim_{x\to a^+} \psi_3(x) \\
\lim_{x\to a^-} \frac{d}{d x}\psi_2(x) &= \lim_{x\to a^+} \frac{d}{d x}\psi_3(x)
\end{align*}
\begin{align}
A + B &= C + D \\
ik_1A - ik_1B &= ik_2C - ik_2D \\
Ce^{ik_2a} + De^{-ik_2a} &= Fe^{ik_1a} \\
ik_2Ce^{ik_2a} - ik_2De^{-ik_2a} &= ik_1Fe^{ik_1a}
\end{align}
\begin{align}
k_1A + k_1B &= k_1C + k_1D \\
k_1A - k_1B &= k_2C - k_2D \\
k_2Ce^{ik_2a} + k_2De^{-ik_2a} &= k_2Fe^{ik_1a} \\
k_2Ce^{ik_2a} - k_2De^{-ik_2a} &= k_1Fe^{ik_1a}
\end{align}
\begin{align}
2k_1A &= (k_1+k_2)C + (k_1-k_2)D \\
2k_1B &= (k_1-k_2)C + (k_1+k_2)D \\
2k_2Ce^{ik_2a} &= (k_1+k_2)Fe^{ik_1a} \\
2k_2De^{-ik_2a} &= (k_2-k_1)Fe^{ik_1a}
\end{align}
To solve for $F$ in relation to $A$, consider equations $(28)$, $(30)$, and $(31)$.
\begin{equation}
2k_1A = \frac{(k_1+k_2)^2}{2k_2}Fe^{i(k_1-k_2)a} - \frac{(k_1-k_2)^2}{2k_2}Fe^{i(k_1+k_2)a}
\end{equation}
\begin{equation}
4k_1k_2e^{-ik_1a}A = (k_1+k_2)^2Fe^{-ik_2a} - (k_1-k_2)^2Fe^{ik_2a}
\end{equation}
Using Euler's formula to expand $e^{-ik_2a}$ and $e^{ik_2a}$, the following can be derived:
\begin{equation}
4k_1k_2e^{-ik_1a}A = \left(-2i{k_1}^2\sin{k_2a} + 4k_1k_2\cos{k_2a} - 2i{k_2}^2\sin{k_2a}\right)F
\end{equation}
\begin{equation}
F = \frac{2k_1k_2e^{-ik_1a} A}{2k_1k_2\cos{k_2a} - i\left({k_1}^2 + {k_2}^2\right)\sin{k_2a}}
\end{equation}
To solve for $B$ in relation to $A$, consider equations $(29)$, $(30)$, and $(31)$.
\begin{equation}
2k_1B = \frac{{k_1}^2 - {k_2}^2}{2k_2}Fe^{i(k_1-k_2)a} - \frac{{k_1}^2-{k_2}^2}{2k_2}Fe^{i(k_1+k_2)a}
\end{equation}
\begin{equation}
\frac{4k_1k_2e^{-ik_1a}B}{{k_1}^2 - {k_2}^2} = \left(e^{-ik_2a} - e^{ik_2a}\right)F
\end{equation}
Using Euler's formula to expand $e^{-ik_2a}$ and $e^{ik_2a}$, the following can be derived:
\begin{equation}
\frac{2k_1k_2 e^{-ik_1a} B}{-i\left({k_1}^2 - {k_2}^2\right)\sin{k_2a}} = F
\end{equation}
Comparing equations $(35)$ and $(38)$, $B$ is solved for in relation to $A$.
\begin{equation}
B = \frac{-i\left({k_1}^2 - {k_2}^2\right)\sin(k_2a) A}{2k_1k_2\cos{k_2a} - i\left({k_1}^2 + {k_2}^2\right)\sin{k_2a}}
\end{equation}
Considering equations $(30)$ and $(31)$ alongside equation $(35)$, $C$ and $D$ can also be solved for in relation to $A$, but since only $A$, $B$, and $F$ are needed to calculate the reflection and transmission coefficients, the derivations of $C$ and $D$ are omitted here. In order to find the reflection and transmission coefficients, the wave function must be first written in terms of its incident, reflected, and transmitted components, $\psi_i(x)$, $\psi_r(x)$, and $\psi_t(x)$ respectively.
\begin{align}
\psi_i(x) & = Ae^{ik_1x} \\
\psi_r(x) & = Be^{-ik_1x} \\
\psi_t(x) & = Fe^{ik_1x}
\end{align}
The reflection and transmission coefficients, $R$ and $T$ respectively, are defined as follows:
\begin{align}
R & = -\frac{j_r}{j_i} \\
T & = \frac{j_t}{j_i}
\end{align}
where $j_i$, $j_r$, and $j_t$ are the incident, reflected, and transmitted probability currents respectively.
\begin{align}
R & = -\frac{\psi_r(x) \frac{d}{d x} {\psi_r}^*(x) - {\psi_r}^*(x) \frac{d}{d x} \psi_r(x)}{\psi_i(x) \frac{d}{d x} {\psi_i}^*(x) - {\psi_i}^*(x) \frac{d}{d x} \psi_i(x)} \\
T & = \frac{\psi_t(x) \frac{d}{d x} {\psi_t}^*(x) - {\psi_t}^*(x) \frac{d}{d x} \psi_t(x)}{\psi_i(x) \frac{d}{d x} {\psi_i}^*(x) - {\psi_i}^*(x) \frac{d}{d x} \psi_i(x)}
\end{align}
\begin{align}
R & = \frac{|B|^2}{|A|^2} \\
T & = \frac{|F|^2}{|A|^2}
\end{align}
Applying the solutions for $B$ and $F$ found in equations $(39)$ and $(35)$ respectively gives:
\begin{align}
R & = \frac{\left({k_1}^2 - {k_2}^2\right)^2\sin^2{k_2a}}{4{k_1}^2{k_2}^2\cos^2{k_2a} + \left({k_1}^2 + {k_2}^2\right)^2\sin^2{k_2a}} \\
T & = \frac{4 {k_1}^2 {k_2}^2 }{4{k_1}^2 {k_2}^2 \cos^2{k_2a} + \left({k_1}^2 + {k_2}^2\right)^2 \sin^2{k_2a}}
\end{align}
\begin{align}
R & = \frac{\left({k_1}^2 - {k_2}^2\right)^2\sin^2{k_2a}}{4{k_1}^2{k_2}^2 + \left({k_1}^2 - {k_2}^2\right)^2\sin^2{k_2a}} \\
T & = \frac{4 {k_1}^2 {k_2}^2 }{4{k_1}^2 {k_2}^2 + \left({k_1}^2 - {k_2}^2\right)^2 \sin^2{k_2a}}
\end{align}
\begin{align}
R & = \left[ \frac{4{k_1}^2{k_2}^2}{\left({k_1}^2 - {k_2}^2\right)^2\sin^2{k_2a}} + 1\right]^{-1} \\
T & = \left[ \frac{\left({k_1}^2 - {k_2}^2\right)^2 \sin^2{k_2a}}{4{k_1}^2 {k_2}^2} + 1 \right]^{-1}
\end{align}
Interestingly contrary to classical mechanics, quantum mechanics suggests that the particle may actually be reflected by the potential barrier, despite having a total energy of equal or greater value than $V_0$.

If There Is Insufficient Energy

For $E < V_0$, equations $(8)$, $(9)$, and $(10)$ must be solved to find $\psi_1(x)$, $\psi_2(x)$, and $\psi_3(x)$. To do this, follow the methodology employed in the previous section, "If There Is Sufficient Energy". The solutions of equations $(8)$, $(9)$, and $(10)$ are identical to those of $(5)$, $(6)$, and $(7)$ respectively save for the use of $i\kappa$ in the place of $k_2$.
\begin{align}
\psi_1(x) & = Ae^{ik_1x} + Be^{-ik_1x} \\
\psi_2(x) & = Ce^{-\kappa x} + De^{\kappa x} \\
\psi_3(x) & = Fe^{ik_1x}
\end{align}
Applying the same boundary conditions as in the previous section and manipulating algebra in the same manner, it can also be found that:
\begin{align}
2ik_1A &= (ik_1 - \kappa)C + (ik_1 + \kappa)D \\
2ik_1B &= (ik_1 + \kappa)C + (ik_1 - \kappa)D \\
2\kappa Ce^{-\kappa a} &= (\kappa - ik_1)Fe^{ik_1a} \\
2\kappa De^{\kappa a} &= (ik_1 + \kappa )Fe^{ik_1a}
\end{align}
To solve for $F$ in relation to $A$, consider equations $(58)$, $(60)$, and $(61)$.
\begin{equation}
2ik_1A = - \frac{(ik_1 - \kappa)^2}{2\kappa}Fe^{(ik_1 + \kappa)a} + \frac{(ik_1 + \kappa)^2}{2\kappa}Fe^{(ik_1 - \kappa)a}
\end{equation}
\begin{equation}
4ik_1\kappa e^{-ik_1a} A = - (ik_1 - \kappa)^2Fe^{\kappa a} + (ik_1 + \kappa)^2Fe^{ -\kappa a}
\end{equation}
\begin{equation}
4ik_1\kappa e^{-ik_1a} A = \left[ \left( {k_1}^2 - \kappa^2 \right)\left(e^{\kappa a} - e^{ -\kappa a}\right) + 2ik_1\kappa\left(e^{\kappa a} + e^{ -\kappa a}\right) \right] F
\end{equation}
\begin{equation}
F = \frac{ 2ik_1\kappa e^{-ik_1a} A }{ \left( {k_1}^2 - \kappa^2 \right)\sinh{\kappa a} + 2ik_1\kappa\cosh{\kappa a} }
\end{equation}
(In case you are unfamiliar with hyperbolic functions, $\sinh{u} = (e^{u} - e^{-u})/2$ is the hyperbolic sine function and $\cosh{u} = (e^{u} + e^{-u})/2$ is the hyperbolic cosine function.) To solve for $B$ in relation to $A$, consider equations $(59)$, $(60)$, and $(61)$.
\begin{equation}
2ik_1B = \frac{{k_1}^2 + \kappa^2}{2\kappa}Fe^{(ik_1 + \kappa)a} - \frac{{k_1}^2 + {\kappa}^2}{2\kappa} Fe^{(ik_1 - \kappa) a}
\end{equation}
\begin{equation}
\frac{4ik_1\kappa e^{-ik_1a} B}{ {k_1}^2 + \kappa^2 } = Fe^{\kappa a} - Fe^{-\kappa a}
\end{equation}
\begin{equation}
\frac{2ik_1\kappa e^{-ik_1a} B}{ \left({k_1}^2 + \kappa^2\right) \sinh{\kappa a}} = F
\end{equation}
Comparing equations $(65)$ and $(68)$, $B$ is solved for in relation to $A$.
\begin{equation}
B = \frac{ \left({k_1}^2 + \kappa^2\right) \sinh(\kappa a) A }{ \left( {k_1}^2 - \kappa^2 \right)\sinh{\kappa a} + 2ik_1\kappa\cosh{\kappa a} }
\end{equation}
As in the previous section, the wave function written in terms of its incident, reflected, and transmitted components is:
\begin{align}
\psi_i(x) & = Ae^{ik_1x} \\
\psi_r(x) & = Be^{-ik_1x} \\
\psi_t(x) & = Fe^{ik_1x}
\end{align}
Furthermore, the reflection and transmission coefficients, derivable using the same method as in the previous section, are again given by:
\begin{align}
R & = \frac{|B|^2}{|A|^2} \\
T & = \frac{|F|^2}{|A|^2}
\end{align}
\begin{align}
R & = \frac{ \left({k_1}^2 + \kappa^2\right)^2 \sinh^2{\kappa a} }{ \left( {k_1}^2 - \kappa^2 \right)^2\sinh^2{\kappa a} + 4{k_1}^2\kappa^2\cosh^2{\kappa a} } \\
T & = \frac{ 4{k_1}^2\kappa^2 }{ \left( {k_1}^2 - \kappa^2 \right)^2\sinh^2{\kappa a} + 4{k_1}^2\kappa^2\cosh^2{\kappa a} }
\end{align}
\begin{align}
R & = \frac{ \left({k_1}^2 + \kappa^2\right)^2 \sinh^2{\kappa a} }{ \left( {k_1}^2 + \kappa^2 \right)^2\sinh^2{\kappa a} + 4{k_1}^2\kappa^2 } \\
T & = \frac{ 4{k_1}^2\kappa^2 }{ \left( {k_1}^2 + \kappa^2 \right)^2\sinh^2{\kappa a} + 4{k_1}^2\kappa^2 }
\end{align}
\begin{align}
R & = \left[ \frac{4{k_1}^2\kappa^2}{\left( {k_1}^2 + \kappa^2 \right)^2\sinh^2{\kappa a}} + 1\right]^{-1} \\
T & = \left[ \frac{\left( {k_1}^2 + \kappa^2 \right)^2\sinh^2{\kappa a}}{4{k_1}^2\kappa^2} + 1 \right]^{-1}
\end{align}
Contrary to classical expectations which would suggest that the particle has zero probability of travelling beyond $x=0$, quantum mechanics asserts that the particle has a non-zero probability of tunneling through the rectangular potential barrier, despite having a total energy less than $V_0$. This phenomenon marks a major difference between quantum and classical mechanics.

12 comments:

  1. This is, truly, a most tedious derivation.

    ReplyDelete
  2. Thank you so much...I couldn't get this awesome derivation anywhere else..!!!!

    ReplyDelete
  3. Please, did u wrote this website in Latex ?
    If yes, can u give me the code ?

    Thanks

    ReplyDelete
  4. This is amazing..thank you very much sir..i wish you could derive the harmonic oscillator using asymptotic or power series method

    ReplyDelete
  5. Shouldn't the second term in 32 have a positive sign, not negative?

    ReplyDelete
  6. Plz say about quantum scattering across a step potential.

    ReplyDelete
  7. Thanks a lot for sharing this amazing knowledge with us. This site is fantastic. I always find great knowledge from it.
    Artistic Math

    ReplyDelete
  8. I can't see how to get to (32) from considering (28), (30) and (31). Too many steps skipped and _what_ to consider about them isn't mentioned.

    ReplyDelete

Blog