Conservation of Probability
To start, let's derive the conservation law for probability. We know that the probability, $P(R, t)$, that the particle is in the three-dimensional region $R$ at time $t$ is given by:\begin{equation}
P(R, t) = \int_R |\psi(\mathbf{r}, t)|^2 dR
\end{equation}
The rate over time at which the amount of probability in the region $R$ changes is thus given by:P(R, t) = \int_R |\psi(\mathbf{r}, t)|^2 dR
\end{equation}
\begin{equation}
\frac{\partial}{\partial t}P(R, t) = \frac{\partial}{\partial t} \int_R |\psi(\mathbf{r}, t)|^2 dR
\end{equation}
As you can imagine, probability needs to be conserved and so, the probability current vector, $\mathbf{j}$, can be related to $\frac{\partial}{\partial t}P(R, t)$ like so:\frac{\partial}{\partial t}P(R, t) = \frac{\partial}{\partial t} \int_R |\psi(\mathbf{r}, t)|^2 dR
\end{equation}
\begin{equation}
\frac{\partial}{\partial t}P(R, t) + \int_S \mathbf{j} dS = 0
\end{equation}
where $S$ is the surface of the region $R$. \frac{\partial}{\partial t}P(R, t) + \int_S \mathbf{j} dS = 0
\end{equation}
\begin{equation}
\frac{\partial}{\partial t} \int_R |\psi(\mathbf{r}, t)|^2 dR + \int_S \mathbf{j} dS = 0
\end{equation}
The above equation is the conservation law for quantum mechanical probability.\frac{\partial}{\partial t} \int_R |\psi(\mathbf{r}, t)|^2 dR + \int_S \mathbf{j} dS = 0
\end{equation}
Divergence Theorem
To proceed any further, we'll need to use the divergence theorem, so let's derive that here.\begin{equation}
\int_R \nabla \mathbf{j} dR = \int_{R_z} \int_{R_y} \int_{R_x} \left[ \frac{\partial}{\partial x}j_x + \frac{\partial}{\partial y}j_y + \frac{\partial}{\partial z}j_z \right] dxdydz
\end{equation}
where $j_x$, $j_y$, and $j_z$ are respectively the $x$, $y$, and $z$ components of the flux, $j$, vector and $R_x$, $R_y$, and $R_z$ are respectively the $x$, $y$, and $z$ boundaries of the region $R$.\int_R \nabla \mathbf{j} dR = \int_{R_z} \int_{R_y} \int_{R_x} \left[ \frac{\partial}{\partial x}j_x + \frac{\partial}{\partial y}j_y + \frac{\partial}{\partial z}j_z \right] dxdydz
\end{equation}
\begin{equation}
\int_R \nabla \mathbf{j} dR = \int_{R_z} \int_{R_y} [j_x]_{R_x} dydz + \int_{R_z} \int_{R_x} [j_y]_{R_y} dxdz + \int_{R_y} \int_{R_x} [j_z]_{R_z} dxdy
\end{equation}
\begin{equation}
\int_R \nabla \mathbf{j} dR = \int_S \mathbf{j} dS
\end{equation}
The above equation is the mathematical statement of the divergence theorem.\int_R \nabla \mathbf{j} dR = \int_{R_z} \int_{R_y} [j_x]_{R_x} dydz + \int_{R_z} \int_{R_x} [j_y]_{R_y} dxdz + \int_{R_y} \int_{R_x} [j_z]_{R_z} dxdy
\end{equation}
\begin{equation}
\int_R \nabla \mathbf{j} dR = \int_S \mathbf{j} dS
\end{equation}
Solving for the Probability Current
Using the divergence theorem, we can rewrite equation $(4)$ as:\begin{equation}
\frac{\partial}{\partial t} \int_R |\psi(\mathbf{r}, t)|^2 dR + \int_R \nabla \mathbf{j} dR = 0
\end{equation}
Since $R$ is arbitrary, we can remove the definite integration from the above equation by differentiation.\frac{\partial}{\partial t} \int_R |\psi(\mathbf{r}, t)|^2 dR + \int_R \nabla \mathbf{j} dR = 0
\end{equation}
\begin{equation}
\frac{\partial}{\partial t} \psi(\mathbf{r}, t) \psi^*(\mathbf{r}, t) + \nabla \mathbf{j} = 0
\end{equation}
The time-dependent Schrodinger equation states: \frac{\partial}{\partial t} \psi(\mathbf{r}, t) \psi^*(\mathbf{r}, t) + \nabla \mathbf{j} = 0
\end{equation}
$$i \hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = -\frac{\hbar^2}{2m}\nabla^2 \psi(\mathbf{r}, t) + V(\mathbf{r}, t) \psi(\mathbf{r}, t)$$
If we take the complex conjugate of that, we get:$$-i \hbar \frac{\partial}{\partial t} \psi^*(\mathbf{r}, t) = -\frac{\hbar^2}{2m}\nabla^2 \psi^*(\mathbf{r}, t) + V(\mathbf{r}, t) \psi^*(\mathbf{r}, t)$$
Using the above two equations, equation $(9)$ can be rewritten as:\begin{equation}
-\psi(\mathbf{r}, t)\frac{i\hbar}{2m}\nabla^2 \psi^*(\mathbf{r}, t) + \psi^*(\mathbf{r}, t) \frac{i\hbar}{2m}\nabla^2 \psi(\mathbf{r}, t) + \nabla \mathbf{j} = 0
\end{equation}
\begin{equation}
\frac{i\hbar}{2m}\left[ -\psi(\mathbf{r}, t) \nabla^2 \psi^*(\mathbf{r}, t) + \psi^*(\mathbf{r}, t) \nabla^2 \psi(\mathbf{r}, t)\right] + \nabla \mathbf{j} = 0
\end{equation}
\begin{equation}
\frac{i\hbar}{2m}\nabla \left[ -\psi(\mathbf{r}, t) \nabla \psi^*(\mathbf{r}, t) + \psi^*(\mathbf{r}, t) \nabla \psi(\mathbf{r}, t)\right] + \nabla \mathbf{j} = 0
\end{equation}
\begin{equation}
\mathbf{j} = \frac{i\hbar}{2m} \left[\psi(\mathbf{r}, t) \nabla \psi^*(\mathbf{r}, t) - \psi^*(\mathbf{r}, t) \nabla \psi(\mathbf{r}, t)\right] + \mathbf{C}
\end{equation}
Applying the condition that $\mathbf{j}=0$ at position $\mathbf{r}$ when $\psi(\mathbf{r}, t) = 0$ for all $t$, we find that $\mathbf{C}=0$. Thus, the probability current, $\mathbf{j}$, is derived to be:-\psi(\mathbf{r}, t)\frac{i\hbar}{2m}\nabla^2 \psi^*(\mathbf{r}, t) + \psi^*(\mathbf{r}, t) \frac{i\hbar}{2m}\nabla^2 \psi(\mathbf{r}, t) + \nabla \mathbf{j} = 0
\end{equation}
\begin{equation}
\frac{i\hbar}{2m}\left[ -\psi(\mathbf{r}, t) \nabla^2 \psi^*(\mathbf{r}, t) + \psi^*(\mathbf{r}, t) \nabla^2 \psi(\mathbf{r}, t)\right] + \nabla \mathbf{j} = 0
\end{equation}
\begin{equation}
\frac{i\hbar}{2m}\nabla \left[ -\psi(\mathbf{r}, t) \nabla \psi^*(\mathbf{r}, t) + \psi^*(\mathbf{r}, t) \nabla \psi(\mathbf{r}, t)\right] + \nabla \mathbf{j} = 0
\end{equation}
\begin{equation}
\mathbf{j} = \frac{i\hbar}{2m} \left[\psi(\mathbf{r}, t) \nabla \psi^*(\mathbf{r}, t) - \psi^*(\mathbf{r}, t) \nabla \psi(\mathbf{r}, t)\right] + \mathbf{C}
\end{equation}
\begin{equation}
\mathbf{j} = \frac{i\hbar}{2m} \left[\psi(\mathbf{r}, t) \nabla \psi^*(\mathbf{r}, t) - \psi^*(\mathbf{r}, t) \nabla \psi(\mathbf{r}, t)\right]
\end{equation}
\mathbf{j} = \frac{i\hbar}{2m} \left[\psi(\mathbf{r}, t) \nabla \psi^*(\mathbf{r}, t) - \psi^*(\mathbf{r}, t) \nabla \psi(\mathbf{r}, t)\right]
\end{equation}
No comments:
Post a Comment